A Priori Data-Driven Multi-Clustered Reservoir Generation Algorithm for Echo State Network

نویسندگان

  • Xiumin Li
  • Ling Zhong
  • Fangzheng Xue
  • Anguo Zhang
چکیده

Echo state networks (ESNs) with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

A reservoir-driven non-stationary hidden Markov model

In this work, we propose a novel approach towards sequential data modeling that leverages the strengths of hidden Markov models and echo-state networks (ESNs) in the context of nonparametric Bayesian inference approaches. We introduce a non-stationary hidden Markov model, the time-dependent state transition probabilities of which are driven by a high-dimensional signal that encodes the whole hi...

متن کامل

Architectural designs of Echo State Network

Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the “reservoir”) and an adaptable readout from the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly...

متن کامل

A local Echo State Property through the largest Lyapunov exponent

Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Ec...

متن کامل

Increased robustness and intermittent dynamics in structured Reservoir Networks with feedback

Recent studies using feedforward Echo State Networks (ESN) demonstrate that reservoir stability can be strongly affected by reservoir substructures, such as clusters. Here, we evaluate the impact of including feedback on clustered ESNs and assert that certain cluster configurations extend the permissible range of spectral radius values. We also report a new class of reservoir activity: intermit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015